
1/6

Data & Information – Test 4 (1.5 hours)
18 June 2018, 13:45–15:15

Program: Technical Computer Science / Business & IT
Module: Data & Information (201700279)
Module Coordinator: Klaas Sikkel
Responsible Teachers: Maurice van Keulen / Thomas Hupperich

Please note:
• Please answer every question on a different sheet of paper (the answers will be distributed to

different person for grading).
• You are not allowed to bring any study materials to the test; essential excerpts from the study

materials are available as appendices. You don’t need a calculator.

Grade = #points/10

Question 1: Security (40 points)

1.1
Users of a Web platform are given the feature to write private messages to other users. The
following PHP code snippet is part of a script that implements this functionality. The fields from and
message in the variable $_PM are input given by the sender. When a users receives a message,
these fields will be displayed in the browser by the following code:

 echo "New private message from " . $_PM['from'] . " : [" . $_PM['message'] . "]";

a) What kind of vulnerability could this code yield?
b) How could an attacker exploit this vulnerability
c) What could an attacker achieve by exploiting this vulnerability?

1.2
The following code is part of an authentication script presenting the fields username and password
to a user who wants to log in. After these fields are entered the script will check if there are any
entries in the $result array and if so, log the user in as the first entry.

$user = $_POST['username'];
$pass = $_POST['password'];
$query = "SELECT * FROM users WHERE username = ' " . $user . " '
 AND password = ' " . secure_hash($pass) . " ';";
$result = mysql_query($query);

a) Is the above code insecure and if so, why?
b) Give an example attacker input (the fields username and password) which will log the attacker in

as the user “admin” without the attacker having to know the correct password. The user
“admin” is the first user in the table users.

c) What is the best way, a developer can prevent such an attack?

201700279 Data & Information Test 4, 18-06-2018

2/6

1.3
A website implements advertisements of an external provider. This provider is malicious and delivers
the following code within one of its ads:

 <img src="http://serious-bank.com/transfer.php?IBAN=NL1337h4x0r&amount=1000"
 width="0" height="0" border="0">

The Serious Bank is a reliable bank with a disastrous IT development department that does not
implement any security mechanisms and website actions are generally handled via GET requests.

a) What kind of vulnerability may be in this scenario?
b) What would happen if a user is presented the malicious ad with the given code? In what case

would this attack be successful and in which case would it fail?
c) How can such an attack be prevented by Serious Bank?

Question 2: XML & JSON (40 points)
We base ourselves on the movie database (see Appendix 2 for the schema of the movie db).

Tip: See Appendix 1 for an informal syntax of SQL including types, functions and operators important
for xml and json handling.

a) [SQL/XML] Given the SQL-query below, adapt it using the SQL/XML standard such that it
produces the result as XML. The result should have one row per actor, which contains one
column ‘xml’ containing an element “actor” with attributes “pid” and “moviecount” and as
contents the name of the actor.

 SELECT p.pid, p.name, COUNT(m.mid) AS moviecount
 FROM acts a, person p, movie m
 WHERE a.pid = p.pid
 AND a.mid = m.mid
 GROUP BY p.pid, p.name

An example result looks like:
xml

<actor pid="6526" moviecount="4">Marlon Brando</actor>
<actor pid="6529" moviecount="7">Robert Duvall</actor>
<actor pid="6538" moviecount="1">Gianni Russo</actor>
…

201700279 Data & Information Test 4, 18-06-2018

3/6

b) [SQL/XML] Adapt the query of the previous question, such that the name of the actor is also
an attribute and that the contents of the actor-element contain the names of the movie
(s)he played in as movie-elements.

An example result looks like:
xml

<actor pid="6526" name="Marlon Brando" moviecount="4">
 <movie>Apocalypse Now</movie>
 <movie>On the Waterfront</movie>
 <movie>Godfather, The</movie>
 <movie>Streetcar Named Desire, A</movie>
</actor>
<actor pid="6529" name="Robert Duvall" moviecount="7">
 <movie>Network</movie>
 <movie>MASH</movie>
 <movie>Sling Blade</movie>
 <movie>Godfather: Part II, The</movie>
 <movie>Godfather, The</movie>
 <movie>To Kill a Mockingbird</movie>
 <movie>Apocalypse Now</movie>
</actor>
<actor pid="6538" name="Gianni Russo" moviecount="1">
 <movie>Godfather, The</movie>
</actor>
…

c) [XML querying] A table ‘x’ contains an attribute ‘xml’ which is of type ‘xml’ and contains the

actor elements as in the example result of 2(b) above.

i. Give the XPath that produces all names of actors who only played in the movie
“Godfather, The”.

ii. What is the result of the query “SELECT xpath(‘/movie/@name’, x.xml)
FROM x” if the table ‘x’ contains only the three rows as shown in 2(b) above.
Describe both the contents as well as the type(s) of the resulting column(s).

201700279 Data & Information Test 4, 18-06-2018

4/6

d) [JSON construction] Given the SQL-query below which produces a list of JSON objects with
attributes ‘id’, ‘name’, and ‘roles’. Adapt the query, such that the ‘roles’ attribute is not an
array of strings (array of role names), but an array of json-objects each containing both the
role name as well as the movie name.

SELECT json_build_object('id',p.pid, 'name',p.name,
 'roles',jsonb_agg(a.role))
FROM acts a, person p
WHERE a.pid = p.pid
GROUP BY p.pid

 An example result looks like:
json_build_object

{"id" : 6526,
 "name" : "Marlon Brando",
 "roles" : [{"role": "Don Vito Corleone", "movie": "Godfather, The"},
 {"role": "Colonel Walter E. Kurtz", "movie": "Apocalypse Now"},
 {"role": "Terry Malloy", "movie": "On the Waterfront"},
 {"role": "Stanley Kowalski", "movie": "Streetcar Named Desire, A"}]}
{"id" : 6529,
 "name" : "Robert Duvall",
 "roles" : [{"role": "Tom Hagen", "movie": "Godfather, The"},
 {"role": "Tom Hagen", "movie": "Godfather: Part II, The"},
 {"role": "Arthur \"Boo\" Radley", "movie": "To Kill a Mockingbird"},
 {"role": "Lieutenant Colonel Kilgore", "movie": "Apocalypse Now"},
 {"role": "Mr. Childers", "movie": "Sling Blade"},
 {"role": "Major Frank Burns", "movie": "MASH"},
 {"role": "Frank Hackett", "movie": "Network"}]}
{"id" : 6538,
 "name" : "Gianni Russo",
 "roles" : [{"role": "Carlo Rizzi", "movie": "Godfather, The"}]}
…

e) [JSON querying] Given the SQL-query below which obtains the “id” of all actors with name

“Robert Duvall” from a table “x” which has an attribute “json” containing json-objects as in
the example result of the previous question. Rewrite the WHERE-clause such that the result
of the query remains the same, but it now uses the “@>” operator instead of the “->>”
operator.

SELECT x.json->>id
FROM x
WHERE x.json->>name = “Robert Duvall”

f) [JSON] For each of the statements below, say whether they are true or false.

i. A JSON array can contain JSON scalar values

ii. A JSON array can contain JSON objects

iii. A JSON array can contain JSON arrays

201700279 Data & Information Test 4, 18-06-2018

5/6

Question 3: Tree-shaped data / Pathfinder (20 points)
We base ourselves again on the movie database (see Appendix 2 for the schema of the movie
database).

Tip: See Appendix 1 for an informal syntax of SQL.

a) [Pathfinder] Given the small XML-document below, assign to each of the nodes its pre-order
and post-order rank. Write down the full resulting table according to the Pathfinder
document table structure: pre, post, level, kind, name, value.

<actor pid="6526" name="Marlon Brando" moviecount="4">
 <movie>Apocalypse Now</movie>
 <movie>On the Waterfront</movie>
 <movie>Godfather, The</movie>
 <movie>Streetcar Named Desire, A</movie>
</actor>

b) [Dewey numbering] Given an XML node with Dewey number 1.4.3. Which of the following
statements is true?

i. The parent of this node has Dewey number 4.3.

ii. This node has 2 preceding siblings.

iii. It is possible to determine the level of the node from its Dewey number.

c) [Pathfinder] Translate the XPath
//movie[text()=”Apocalypse Now”]/parent::actor/@name
according to the Pathfinder approach to an SQL-query that produces the right result given
the table of the previous question. The result of the query on this table should be the pre-
order rank of the resulting ‘name’ attributes. According to XPath semantics, the result
should be duplicate-free and in document order. Obviously, the query should also work on
any XML- fragment that is structured in this way.

d) [Pathfinder] PostgreSQL stores XML and JSON values in a column of a table as a special type.
With the Pathfinder approach such values are shredded, i.e., stored in a table with a fixed
set of attributes. What is the main purpose of doing so? Explain your answer.

201700279 Data & Information Test 4, 18-06-2018

6/6

Appendix 1: Informal syntax of SQL

In the informal syntax, we use the following notations

• A | B to indicate a choice between A and B
• [A] to indicate that A is optional
• A* to indicate that A appears 0 or more times
• A+ to indicate that A appears 1 or more times
• ‘A’ to indicate that the symbol A is literally that symbol

We are not precise in punctuation in the syntax, but this is irrelevant in this exam anyway.

SQL
createtable: CREATE TABLE tablename ‘(‘ columndef+ constraint* ‘)’
createview: CREATE VIEW viewname AS query
query: SELECT (column [AS colname])+ FROM (tablename [AS colname])+ WHERE condition
 [GROUP BY column+] [ORDER BY column+]

columndef: colname type [NOT NULL] [UNIQUE] [PRIMARY KEY] [REFERENCES tablename (colname+)]
constraint: PRIMARY KEY (colname, ...)
 | FOREIGN KEY(colname, ...) REFERENCES tablename(colname, ...) | CHECK (condition)
column: [tablename ‘.’] colname | ‘*’
sqlxml: XMLELEMENT([NAME colname] , column*) | XMLATTRIBUTES(column*) | XMLFOREST(column*)
| XMLAGG(column*)

Examples of condition:
 column = value [(OR | AND) [NOT] column <> value]
 | column IS [NOT] NULL
 | column [NOT] IN (value, ...)
 ...
xmljson-functions: xpath(constant,…), unnest(…), to_jsonb(…), jsonb_build_object(…,…,…),
 json_build_array(…,…,…), json_agg(…)
json operators: @>, ->, ->>, ||, -

Appendix 2: Database schema for movie database

• Movie: mid INTEGER PRIMARY KEY, name TEXT, year NUMERIC(4,0), plot_outline TEXT,
rating NUMERIC(2,1)  

• Person: pid INTEGER PRIMARY KEY, name TEXT  
• Acts: mid INTEGER, pid INTEGER, role TEXT  
• Directs: mid INTEGER, pid INTEGER  
• Writes: mid INTEGER, pid INTEGER  
• Genre: mid INTEGER, genre TEXT  
• Language: mid INTEGER, language TEXT  
• Certification: mid INTEGER, country TEXT, certificate TEXT  
• Runtime: mid INTEGER, country TEXT, runtime TEXT  

	Data & Information – Test 4 (1.5 hours)
	Question 1: Security (40 points)
	1.1
	1.2
	1.3
	Question 2: XML & JSON (40 points)
	Question 3: Tree-shaped data / Pathfinder (20 points)
	Appendix 1: Informal syntax of SQL
	Appendix 2: Database schema for movie database

