Test Pearl 110 — Intelligent Interaction

Pearls of Computer Science (201300070) October 20 2017, 13:45–14:45 Module coordinator: Doina Bucur & Maurice van Keulen

Instructor: Mannes Poel

- You may use 1 A4 sheet with your own notes for this test, as well as a simple calculator
- Scientific or graphical calculators, laptops, mobile phones, books etc. are not allowed. Put those in your bag now (with the sound switched off)!
- Total number of points: 100

20 points Question 1

A bag contains 10 fair dice: of which 2 are a 4 sided dice, one is a 6 sided dice, 2 are a 8-sided dice, 2 are a 12-sided dice and 3 are a 20-sided dice. All the dices are fair, so that for example the probability of throwing a 3 with a 20 sided dice is 1/20. John randomly draws a dice from the bag and afterwards throws with this dice. The outcome is 5. This is the data or observation D.

H	P(H)	P(D H)	P(D H).P(H)	P(H D)
4				
6				
8				
12				
20				

- (a) Copy the above table to your answer form and fill in the table with the correct entries (all empty entries should be filled in). In the table H stands for the possible dice (hypothesis), P(H) is the prior probability, P(D|H) the likelihood, and P(H|D), the normalized posterior of H given the data D.
- (b) What is the most likely value of H when we know D (i.e. that the outcome is 5)?

25 points Question 2

Consider the following piece of email, denoted by e:

we have display boxes with credit applications that we need to place in the small owner-operated stores in your area . here is what you do: 1 . introduce yourself to the store owner or manager . 2 . use our 90 % effective script which tells them how this little display box will save their customers hundreds of dollars , be a drawing card for their business

and a vocabulary V given by $V = \{business, display, lifetime, save, text\}$

(a) How will these piece of text e be coded ϕ f one uses a bag of word coding.

Now assume that one has the following database with spam and ham emails, only described by the words in V:

Id	words in V	class
1	business, lifetime, save, lifetime, save, text	spam
2	business, display, display, save, save, text	spam
3	business, text, text, save, save	ham
4	display, display, lifetime, text	ham
5	lifetime, save, text	ham
6	business, display, text	ham

- (b) Compute the likelihood that the above email is generated by the spam class, i.e. compute P(e|spam). Assume that no smoothing is applied and one uses a multinomial bag of words approach.
- (c) Also compute P(e|ham)
- (d) How will this email e be classified, spam or ham? Clearly explain your answer

25 points Question 3

Consider the following dataset with attributes (features) A and B, with A taking the values a_1 , a_2 and a_3 and B has values T and F. The class label is given in the last column and is 1 or 0.

Id	Α	В	Class label
1	<i>a</i> ₁	Т	1 .
2	<i>a</i> ₂ .	Т	1.
3	a ₃	Т	1.
4	a_1	F	1.
5	a ₂ .	T	1 '-
6	<i>a</i> ₃	F	1 -
7	a_1	F	0
8	a_2 .	F	0
9	a ₃	F	0
10	$a_{\rm I}$	F	0
11	a_2 .	T	17
12	<i>a</i> ₃	T	1.
13	a ₂ .	T	0
14	a _{2.}	Т	1 7
15	az	Т	1 ,,

- (a) What is the information gain for attribute A and for attribute B? A table with values for $-p \log_2(p)$ can be found at the end of this exam.
- (b) Which attribute will be at the top of the decision tree and why?
- (c) Compute and draw the complete decision tree.
- (d) What is the error rate on the training set for this decision tree?

15 points Question 4

A certain classifier was tested on a test, resulting in the following confusion matrix:

		Predicted class		
		C_1	C_2	C_3
Actual	C_1	120	15	18
Class	C_2	16	150	10
	C_3	11	3	130

- (a) What is the accuracy of this classifier?
- (b) What is the definition of recall for class C_3 and what is the recall of this classifier for class C_3 ?
- (c) What is the definition of precision for class C_1 and what is the precision of this classifier for class C_1 ?

15 points Question 5

Assume that we are training a linear classifier and that the current linear classifier is given by the line $2 + 1x_1 - 2x_2 = 0$. The next feature point in our training set is given by x = (-1, 1).

- (a) How will the feature point x be classified, given the current weights w = (2, 1, -2) of the linear classifier, 0 or 1?
- (b) Assume that the feature point x is misclassified How will the weights of the linear classifier be adapted. Assume a learning rate α of 0.2 and only one iteration of adapting the weights.
- (c) How will x be classified after the above adaptation of the weight vectors w? Is this adaptation a step in the right direction? Motivate your answer!

Table for $-p \log_2(p)$

p	$-p\log_2(p)$	р	$-p\log_2(p)$	p	$-p\log_2(p)$
0	0	1/8	0.38	1/10	0.33
1	0	2/8	0.50	2/10	0.46
1/2	0.50	3/8	0.53	3/10	0.52
1/3	0.53	4/8	0.50	4/10	0.53
2/3	0.39	5/8	0.42	5/10	0.50
1/4	0.50	6/8	0.31	6/10	0.44
2/4	0.50	7/8	0.17	7/10	0.36
3/4	0.31	1/9	0.35	8/10	0.26
1/5	0.46	2/9	0.48	9/10	0.14
2/5	0.53	3/9	0.53	1/11	0.31
3/5	0.44	4/9	0.52	2/11	0.45
4/5	0.26	5/9	0.47	3/11	0.51
1/6	0.43	6/9	0.39	4/11	0.53
2/6	0.53	7/9	0.28	5/11	0.52
3/6	0.50	8/9	0.15	6/11	0.48
4/6	0.39			7/11	0.42
5/6	0.22			8/11	0.33
1/7	0.40			9/11	0.24
2/7	0.51			10/11	0.13
3/7	0.52				
4/7	0.46				
5/7	0.35				
6/7	0.19				