EXAMINATION

Formal Methods and Tools PROGRAMMING PARADIGMS code: 201400537

Faculty of EEMCS date: 23 June 2017
University of Twente CONCURRENT PROGRAMMING time: 13.45-16.45

m This is an ‘open book’ examination. You are allowed to have a copy of Java Concurrency
in Practice, an (unannotated) copy of the course manual, a copy of the (unannotated)
lecture (hoorcollege) slides, and print outs of the following additional material:

s A gentle introduction to OpenCL - DrDobbs, by M. Scarpino.
s B. Chapman, G. Jost and R. van der Pas. Using OpenMP - The Book.

¢ Simon Peyton Jones and Satnam Singh. A Tutorial on Paraliel and Concurrent Pro-
gramming in Haskell. Advanced Functional Progamming Summer School.

e The Rust Programming Language, second edition.

You are not allowed to take personal notes, solutions to the exercises, and (answers to)
previous examinations with you.

m You can earn 100 points with the following 7 questions. The final grade is computed as the
number of points, divided by 10. Students in the Programming Paradigms module need
to obtain at least a 5.0 for the test. The bonus points that were obtained by participating in
the quiz during the tutorial sessions and the first lecture will be added to the final result.

GOOD LUCK!

Question 1 (15 points)

An Exchanger is a synchronization mechanism where two threads participate and swap elements with each other.
Each thread presents some object on entry to the exchange method, matches with a partner thread, and receives its
partner’s object on return.

interface Exchangelnterface<V> {

publiec V exchange (V %) throws InterruptedException;

Provide an implementation of this ExchangeInterface using a Reent rantLock in combination with one or
more Condition objects. Make sure that there always exactly two parties involved in the exchange.

Test Concurrent Programming — 23 June 2017 2

Question 2 (20 points)

Consider the following class BoundedMap:

class BoundedMap {
private int[] contents;

public BoundedMap{int size) ({
contents = new int{size];

}

public int lockup{int i) {
return contents[i];

1

public void update(int i, int x) |{
contents[i] = x;

}

public veoid triple(int i} {
contents[i] = 3 * contents[i];

}

This gives a sequential implementation to map values 0 to size to some other integer. It contains functions
to lookup the value stored at position i, update the value stored at position i, and to multiply the value stored at
position i by 3.

a. (4 pnts.) Discuss how to make a thread safe version of BoundedMap using locks. (There is no need to repeat
all code, as long as you clearly indicate where the changes are.)

b. (3 pnts.) Give a suitable guardedby annotation for your program.

¢. (3 pnts.) Discuss what would be suitable pre- and postconditions for the methods update and triple in
your thread safe version of BoundedMap. Motivate your answer.

d. (10 pnts.) Give a lock-free version of the bounded map.

Question 3 (10 points)

A ReadWriteLock maintains a pair of associated locks, one for read-only operations and one for writing. The read
lock may be held simultaneously by multiple reader threads, so long as there are no writers. The write lock is
exclusive.

a. (6 pnts.) Many implementations of a ReadWriteLock (for example, Java’s Reent rantReadWriteLock does
not allow locks to be upgraded, i.e., when you hold a read lock, you cannot transform this into a write lock,
without releasing the lock first. The reason that this is disallowed is because it causes a deadlock. Explain
how such a deadlock could occur.

b. (4 pnts.) When using a ReadWriteLock in a fair mode, different strategies could be implemented to decide
which thread trying to acquire one of the two locks can go first. Discuss under which circumstances the
strategy where threads trying to acquire the write lock always go first would be suitable.

Test Concurrent Programming — 23 June 2017 3

Question 4 (16 points)

Below are 4 multiple choice questions. For each question, motivate your answer. Points are only given if the
motivation is correct.

a. (4 pnrs.) Suppose x and y are shared variables, while r1 and r2 are local variables. If initially x =3 and y =
4, what can we say about the possible final values of r1 and r2.

Thread 1 Thread 2
=5 y =1
int rli =y int r2 = x

A, ricanneverbe?.

B. r2 can never be 6.

C. rl maybe 13.

D. r1 maybe 4, r2 may be 3.

b. (4 pnts.) Consider the following Java program.

class DR {
public statiec int x = 0;
public static int vy 0;

public static void main (String [] args) {
{new Threadl{)).start();
{new Thread2({)).start();

1

class Threadl extends Thread {
public veid run{) {
int rl = DR.x;
if (x1 > 0) {
DR.y = 1;

}

class Thread2 extends Thread {
public void run(} {
int rZ2 = DR.y;
if {r2 > 0y {
DR.x = 1;
t

}

Does this have data races or race conditions?

A. None

B. Only data races

C. Only race conditions
D. Both

Test Concurrent Programming — 23 June 2017

¢. {4 pnts.) Consider the following Java program.
class DRZ {
public static int x = 0;

public static wvoid main(String [] args) {
{(new Threadl{)).start ();
(new Thread2{)).start ();

class Threadl extends Thread {
public void runi() {
DR2.x = DR2.x + 2;

class ThreadZ extends Thread {
public void run() {
DR2.x = DR2.x * 2;

}
Does this have data races or race conditions?

A. None
B. Only dataraces

C. Only race conditions
D. Both

Test Concurrent Programming — 23 June 2017 5

d. (4 pnts.) Consider the following Java program.

import java.util.concurrent.locks.*;
public class Bucket {

//8 invariant elements.length == locks.length;
Object[] elements;

Lock[] locks;

volatile int nrElements;

public Bucket (int n} {
elements = new Object([n];
locks = new Lock[n];
for (int i = 0; 1 < n; i++) {
elements[i] = new Object ();
locks[i] = new ReentrantLock{);

}

nrElements = §;

//@ requires i < elements.length;
public void add{int i, Object o} {
locks[i]l.1lock(};
elements([i] = o;
locks[i] .unlock{);
nrElements+-+;

//@ requires i < elements.length;
public void remove({int i) |{
locks([i].lock(};
elements[i] = null;
locks[i] .unlock{);
nrElements—-;

}

‘Where is the performance bottleneck in this code?

A. Too many locks

B. nrElements accessed by all mutating operations
C. Locks maintained in an array

D. Locks protect too much data

Question 5 (g points)

One common problem in concurrent programming is the management of shared resources. In this exercise, you
are asked to write a small resource management system in Haskell, using software transactional memory. The
resource management system uses a counter to keep track of the amount of resources available. Processes may ask
for an arbitrary amount of resources and block if they’re not available.

Let us define the type of resources as follows: type Resource = TVar Int.

Define operations to:

e initialize availability of a resource,
e acgquire acertain number of resources, and

e release acertain number of resources.

Test Concurrent Programming — 23 June 2017 6

Question 6 (15 points)

Consider the Rust program in Listing 1. The idea of this program is that a long list of sampled data is produced
using a function sample. This sampled data is processed in multiple ways (in process A and process B), and the
outcome of the various processors is printed.

Unfortunately, the current program does not compile.

a. (2 pnis.) The first error message of the compiler reads as follows:

error: cannot borrow immutable lccal variable *data_a‘ as mutable
--> plotter.rs:15:12

\
13 | let data_a = vec! [0;100];

e use ‘mut data_a here to make mutable
14 | for i in 0 .. 100 {
15 | data_afi] = data(i] = 2;

|

cannot borrow mutably

(a similar error message is given for data_b). Explain the reason of this error message, and how it can be
solved.

b. (8 pnts.) The second error message of the compiler reads:

error[E0373]: closure may outlive the current function, but it borrows
‘data‘, which is owned by the current function
——> plotter.rs:20:34
I
20 | let process_b = thread::spawn(!}| {

| ~

may outlive borrowed value ‘data’

23 | data_b[i] = datali] =* 3;
I -——— ‘data' is borrowed here

|
Blew ‘_&\b_\, {g ﬁogs\t] c\)ic){\':l.‘\, G *\..')O OO\J_S ‘-o SD‘U‘E 1"-&. be\ni.kmi-

¢. (5 pnts.) Adapt the program to use message passing instead of shared data.

10

12

14

16

18

20

22

24

26

28

30

32

34

Test Concurrent Programming — 23 June 2017

use std::thread;

fn sample() -> Vec<i32> {
// generate a seguence of data

}

fn main

let

let

|

let

|30

let
let

for

0 A

data = sample();

process_a = thread::spawn(|]| {
let data_a = wvec![0;100];
for i in 0 .. 100 {

data_al[i] = data[i] * Z;

1

return data_a;

process_b = thread::spawni|]| {
let data_b = vec![0;100];
for i in 0 .. 100 {

data_b[i] = datali]l *~ 3;

}
return data_b;

res_a = process_a.join() .unwrapl();
res_b process_b.join () .unwrap();

idin 0 .. 100 {

println! ("({},{})",res_a[i}, res_bl[il);

Listing 1: Plotter Algorithm in Rust

Test Concurrent Programming — 23 June 2017 8

Question 7 (15 peints)

The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem. The problem is to find shortest
distances between every pair of vertices in a given graph, where all edges have a weight.

Listing 2 shows a C implementation of this algorithm. In this algorithm, the graph is represented by a matrix,
such that graph[i] [j] returns the weight of the edge between nodes i and j. Note that graph{i]l 3] is 0ifiis
equal to j, and graph[i] [§] is INF (infinite) if there is no edge from node i to 5.

The code in lines 1 - 14 does initialisation, the loop in lines 21 - 36 is the main part of the algorithm. The
complexity of this algorithm is n%, where n is the number of nodes. Clearly, parallellism could be used to improve
the performance of the algorithm.

a. (7 pnts) Discuss 3 different ways in which the main loop could be parallellized, and give suitable OpenMP
pragma’s for each of them.

b. (8 pnts) Implement an OpenCL kernel that executes this algorithm on a GPU. (No points will be subtracted
for incorrect syntax). Explain how you get to your solution.

[PP CP 201622017 — 23 fune 2017]

4

6

8

10

12

14

i6

18

20

22

24

26

28

30

32

34

36

38

Test Concurrent Programming — 23 June 2017

// Seclves the all-pairs shortest path problem using Floyd Warshall algorithm
2 woid floydWarshall (int graph([][V])

{

/+ dist[][] will be the output matrix that will finally have the shortest
distances between every palr of vertices =/
int dist[V][V], i, 3, k;

/+ Initialize the solution matrix same as input graph matrix. Or
we can say the initial values of shortest distances are based
on shortest paths considering no intermediate vertex. #*/

for (i = 0; i < V; i++)

for (j = 0; 3 < V; j++)
dist[i][J] = graphl[i][]];

/+ Add all vertices one by one to the set of intermediate vertices.
-——> Before start of a iteration, we have shortest distances between all
pairs of vertices such that the shortest distances consider conly the
vertices in set {0, 1, 2, .. k-1} as intermediate vertices.
—-————> After the end of a iteration, vertex neo. k is added to the set of
intermediate vertices and the set becomes (0, 1, 2, .. k} =*/
for (k = 0; k < V; k++)
{
// Pick all vertices as source one by ¢one
for (i = 0; 1 < V; i4+)
{
// Pick all vertices as destination for the
// above picked source
for (j = 0; j < V; J++)
{
// If vertex k 1s on the shortest path from
// i to j, then update the value of dist[i][3j]
if (dist{i][k] + dist[k][j] < dist[i]l[]])
dist[(i1]1[j] = dist[i][k] + dist[k][3i];

Listing 2: Floyd Warshall Algoritm

