
Data & Information – Test 3: Solutions
29 May 2019, 13:45–14:45

Question 1: Information Retrieval / Full-text Search (35 points)

Suppose we have the tables below for a simplified system for storing reviews of mobile apps. The
table ‘app’ contains and identifier (appid), name and description of all apps and the table ‘review’
contains the reviews for these apps storing an identifier (revid), the review itself (review), the user
who wrote the review (user) and a reference to which app the review belongs (forapp).

CREATE TABLE app (
 appid INTEGER,
 name TEXT,
 description TEXT,
 PRIMARY KEY (appid)
)

CREATE TABLE review (
 revid INTEGER,
 user TEXT,
 review TEXT,
 forapp INTEGER,
 PRIMARY KEY (revid),
 FOREIGN KEY (forapp) REFERENCES app(appid)
)

a) [FT-search] Write an SQL query that uses the full-text search capabilities for finding all apps
that have a description that matches “todos | todolist”.

 SELECT *
FROM app
WHERE to_tsquery(‘english’,'todos | todolist')
 @@ to_tsvector(‘english’,name)

b) [FT-search] Write an SQL query that uses the full-text search capabilities for finding all apps
that mention the word “todo” in their description or in one or more of the reviews of that
app. Use the matching operator only once in the query, i.e., match against the combined
text of an app’s description and all its reviews.

 SELECT appid, name
FROM app, review
WHERE review.forapp = app.appid
AND to_tsquery(‘english’,'todo') @@ to_tsvector(‘english’,
 string_agg(review.review) || app.description)
GROUP BY appid, name

c) Which of the following statements is true; explain your answers

I. A “posting list” is a list of terms.

II. A search engine is based on an index-ask-match-rank pattern whereby the indexing
and matching tasks happen off-line, and the asking and ranking tasks on-line (i.e., at
the moment the user poses the query).

III. To convert a string to a tsvector, it is better to use to_tsvector instead of casting
with ‘::’, because to_tsvector also does normalization and stemming and such while
casting does not.

201700279 Data & Information Test3, 29-05-2019 — Solutions

2

 i: FALSE; it is a list of documents or document identifiers.
ii: FALSE; only indexing happens off-line; the other three on-line.
iii: TRUE

d) [IR; tf.idf] Given a table with quotes as illustrated below (filled with tweets from a search for
#coffee on Twitter), calculate the tf.idf scores for the query ‘drink coffee happy’. Explain
your answer by giving the full calculation. The formulas for ranking and idf are given below
the table. If you don’t have a calculator for computing log, just invent a number between 0
and 1 (explicitly mention that you did this!). The terms of the query are given in bold for
your convenience (we assume ‘stemming’, etc. so the words “drink” and “drinking” are both
considered the same term “drink”, and the words “#coffee” and “coffee” are both
considered the same term “coffee”)

Qid User Quote

1 @metalmamalady Good Morning, tweets! #Coffee
2 @mohbasmah The best barista in Jeddah #brista #coffee
3 @cazij Happy Friday ! #coffee helps
4 @julianna_glass Your living is determined not so much what life brings to you as by the attitude

you bring to life.
#TuesdayThoughts

#coffee helps Wonderful day to all!!

5 @jonlalas More #coffee please
6 @nationalcoffee “First, drink more #coffee" - great advice from @Inc (and backed by science)
7 @lisalisnyr9 I’m drinking my coffee right now! Mmmmmm coffee!! #GoodMorning

#HappyFriday #Coffee #ILoveCoffee
8 @ms_coffeelover When the first sip of #coffee finally kicks in.

Idf(t) = log (N/df)

Rank(d,q) = Σt∈q tf(d,t) idf(t)

 “drink”
idf = log(8/2) = log(4) = 0.6
tf is 1 for documents 6 and 7; otherwise 0

“coffee”
idf = log(8/8) = 0
tf is 3 for document 7; otherwise 1

“happy”
idf = log(8/1) = 0.9
tf is 1 for document 3; otherwise 0

Ranking:
0*0.6 + 1*0 + 1*0.9 = 0.9 for document 3
1*0.6 + 3*0 + 0*0.9 = 0.6 for document 7
1*0.6 + 1*0 + 0*0.9 = 0.6 for document 6
0*0.6 + 1*0 + 0*0.9 = 0 for documents 1, 2, 4, 5, 8
Hence the most relevant document is document 3

201700279 Data & Information Test3, 29-05-2019 — Solutions

3

e) [IR; language models] Calculate P(drink coffee happy | document 3) and P(drink coffee
happy | document 7). Give the full calculation to explain your answer.

 P(drink coffee happy | D3) =
 = P(drink| D3) * P(coffee| D3) * P(happy| D3)
 = 0/4 * 1/4 * 1/4 = 0
P(drink coffee happy | D7) =
 = P(drink| D7) * P(coffee| D7) * P(happy| D7)
 = 1/12 * 3/12 * 0/12 = 0

f) [IR; language models] With language models, the actual ranking is done on P(D|T1…Tn) and
not on P(T1…Tn|D) as we have calculated above. We can calculate the former based on Bayes
rule which includes two other factors:
Bayes rule is P(D|T1…Tn)= P(T1…Tn|D)P(D) / P(T1…Tn)
There are two other factors in this equation P(D) and P(T1…Tn) . Which of the two factors
P(D) or P(T1…Tn) makes it that the term “coffee” is weighed less than “drink”? Explain your
answer.

 P(T1…Tn).
“coffee” is a very often occurring term in this collection, perhaps also in the queries,
definitely a more likely term than “drink”. Therefore, P(“coffee”) > P(“drink”). Since,
probabilities are between 0 and 1, dividing by a larger number (still less than 1 but
closer to 1) will produce a smaller result than dividing by a smaller number.
P(D) is a prior probability for the relevance of a document; this has nothing to do with
terms.

Question 2: REST (30 points)

During lecture WP3 we presented the following method that returns an XML document containing
one <hello> element:

 @GET
 @Produces(MediaType.TEXT_XML)
 public String sayXMLHello() {
 return "<?xml version=\"1.0\"?>" + "<hello> Hello Jersey" + "</hello>";
 }

Now suppose that we have a class Todo with the following definition:

public class Todo {
 private String summary;
 private String description;

 public Todo(){
 }
 public String getSummary() {
 return summary;
 }
 public void setSummary(String summary) {
 this.summary = summary;
 }

201700279 Data & Information Test3, 29-05-2019 — Solutions

4

 public String getDescription() {
 return description;
 }
 public void setDescription(String description) {
 this.description = description;
 }

a. (15 points) How can we return an object of this class represented in XML as a response to an

HTTP request in a method called getXML(), without defining the whole XML representation as
String as we did in method sayXMLHello()? Explain what you need to do with the Todo class
and with the getXML() method, and why this works. Don’t forget to explain what should be
done inside method getXML()!

Suppose now that you have to implement a RESTful service that manages a collection of user
profiles, where each profile has a unique id (a string representation of an integer value), a nick name
and a list of postings. Each posting has an id (a string representation of an integer value), a title and a
body.
b. (15 points) Which elements should be given in an HTTP request message (HTTP method, URL and

HTTP message body) to create a profile with id “1099” for “crazyRabbit” and one posting with id
“123”, title “My first posting” and body “Hello world”? Explain your answer, also giving an XML
representation of this profile that could be sent in the body of the HTTP request message.

Answers:

a. In order to return an XML representation of the object we first need to annotate the Todo class

with @XmlRootElement so that JAXB knows that this class will be serialized in XML. This means
that whenever the code refers to an instance (object) of the Todo Java, XML serialisation and
parsing is done automatically. Method getXML() should be annotated with @GET and
@Produces(MediaType.APPLICATION_XML) to indicate that this method should be used to
respond to an HTTP GET message that asks for XML representation. Finally, the object has to be
created in the getXML() method and its attributes need to set and returned by this method.

b. The HTTP request to refer to the URL http://somedomain/profiles/1099, HTTP method

should be PUT (or POST) and the HTTP message body should contain a representation of the
profile according to the resource representation supported by the web service.

This representation could be the following:

<profile>
 <id>1099</id>
 <name>crazyRabbit</name>
 <postings>
 <posting>
 <id>123</id>
 <title>My first posting</title>
 <body>Hello World</body>
 </postings>
</profile>

	Data & Information – Test 3: Solutions
	Question 1: Information Retrieval / Full-text Search (35 points)
	Question 2: REST (30 points)

